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An algorithm is presented for calculating the power for the logistic and proportional hazards models
in which some of the covariaies are discrete and the remainders are multivariate normal. The mean
and covariance matrix of the multivariate normal covariates may depend on the discrete covariates.

The algorithm, which finds the power of the Wald test, uses the result that the information matrix can
be calculated using univariale numerical intcgraiion even when ihere are several continuous covariates.
The algorithm is checked using simulation and in certain situations gives more accurate results than
current methods which are based on simple formulae. The algorithm is used to explore properties of
these models, in particular, the power gain from a prognostic covariate in the analysis of a clinical trial
or observational study. The methods can be extended to determine power for other generalized linear
models.

Keywords: Sample size: Power: Logistic model: Proportional hazards model; Generalized linear
models: Multivariate normal integrals; Wald tesi

1. Introduction

Non-linear data models such as the propotiional hazards and logistic models are commonly
used in the analysis of medical data. Whittemore [1], Hsieh [2] and Hsieh et al. [3], give
formulas for the power of the logistic model for continuous normal covariates. Schoenfeld [4]
gives a sample size formula for the proportional hazards model for a randomized clinical trial
where the distribution of the continuous covariates are independent of the distribution of a
single binary covariate. Schmoor et al. [5] give an approximate formula for this case which
does not depend on this restriction, and Bernardo et ai [6] give a more general approximate
formula.

While these methods provide simple formula, none actually uses the true asymptotic distri-
bution of the test statistic other than in limited circumstances. Thus, there are situations where
these methods cannot be applied or where the approximations that these methods use will fail
even for large samples.
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This paper shows that the calculation of the asymptotic non-centrality parameter of the
Wald statistic for an arbitrary number of normally distributed covariates only involves one-
dimensional numerical integration. This allows the development of an algorithm for calculating
power for these models. The methods described here also apply to the generalized linear models
such as Poisson regression and polychotomous logistic regression.

Section 2 specifies the covariate distribution for which power will be calculated for both the
models. Section 3 presents a theorem which is used to reduce the multivariate integrals involved
in the calculation of the non-centrality parameter into univariate integrals. The proof is given
in Appendix A. Section 4 describes the elements of the power calculation. In section 5, power
calculations based on this algorithm are compared to those in the literature. Sections 7 and 8
use the algorithm to investigate properties of the models, section 9 discusses its computational
efficiency, and section 10 discusses how the algorithm can be used.

2. Description of the covariate model

Most covariate models are partially discrete and partially continuous. To simplify the descrip-
tion of the model assume that the first few covariates are discrete and the remaining are
continuous. The vector of discrete covariates can be thought of as dividing the patient
population into K distinct groups. For instance, suppose a study has two treatments and,
in addition, an ordinal covariate with three values indicating disease severity. Then for the
logistic model, the discrete covariate vector would have length 3, two covariates that code
treatment and one that codes the disease severity. In this case, there would be six values of the
discrete covariate vector. Since the proportional hazards model does not need a constant term,
the discrete covariate vector would have length 3 but there would still be six distinct groups.

We assume that for each of the K distinct groups the continuous covariates can have a
different multivariate distribution. We assume that this distribution is multivariate normal,
although in certain cases this requirement could be relaxed.

To fix notation let X be the covariate and first part, composed of a vector of discrete vari-
ables, has a finite number of values V|, v^ , . . . , v^, where each occur with relative frequency
w\ u)K- For each value Vs, s = 1, . . . , AT. the second part of the covariate vector has a
muhivariate normal distribution with mean ^^ and variance covariance matrix Ev.

This is a general way of describing a joint multinomial, multivariate normal distribution.
In the hypothetical example, suppose that there were two continuous covariates, say age and
blood pressure. Then /T = 6 and u, ^ (1,0. 1)', V2 = (1. 1, 1)', v^ = (1 ,0 ,2) ' if the
patient groups were not randomized than the mean age and tbe blood pressure of group I,
Ml = (lJ-\A- Mil) ' might be different than that of group 2, /zi = (^2.1. M2.2)'• The variance
covariance matrices T,^ (or s = 1 , . . . , 6 could also be different.

3. Theoretical basis for the algorithm

As we show later, the expression for the power and sample size involves finding the infor-
mation matrix for the model. The calculation of this matrix will depend on the calculation of
E{XX' fifi'X)] where / is a specified function which depends on the model. The algorithm
depends on a theorem that shows that this multivariate integral can be reduced to a univariate
integral, which can be evaluated numerically. The proof, which is given in Appendix A, is
based on the fact that the conditional expectation of XX'/{^'X) given fi'X has a closed form
solution in terms of fi'.
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THEOREM 1 Let u^ be (v^. n[)' and D^ be the square matrix with row dimension the same as
U( whose lower right hand corner is E, and is zero elsewhere. (Note that u^ and D^ are the
mean and variance-covariance matrix of the covariate vector for patients in group s.)

Define a, = V^'D,.^. x, = ^'u, and y ^D^fi/a^. Furthermore, let ei(T,a) = f z'
f(crz + T)(J)(Z), where 0U) is the normal probability density function.

Then

.(=1

(1)

4. Algorithm to calculate power

The logistic model specifies that the probability of success for the (th experimental unit is
given by logit(/J'X) = p, whereas the proportional hazards model specifies that the hazard
function is X.{t) exp(^'X).

Assume that the null hypothesis to be tested is of the form HQ: X(p - PQ) = 0. This allows
compound null hypotheses as well as hypotheses about single parameters. The Wald test
statistic is

where I is the empirical information matrix evaluated at ^ the maximum likelihood estimate
of ^. Under the null hypothesis T has a / - distribution with rank(A) degrees of freedom.

Let ^a be the value of ^ under the alternative hypothesis and I is the information matrix for
n observations evaluated at fi.^. Then, under the alternative hypothesis, T has a non-central x^
distribution with non-centrality parameter

A)), (2)

Thus, the power is calculated from 8 using a program for calculating the non-central
distribution function. The only part of expression (2) that needs to be calculated is I.

Under the logistic model,

I = / i f I XX'-

Let

Then

I = «£{XX7(^'X)), (4)

which is calculated using Theorem 1.
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The derivation above can be easily extended to the generalized linear models, the likelihood
is of the form/ = S log(/!(>,, ^,, 0)) where 0 is a dispersion parameter which does not depend
on the covariates and may or may not be present. In addition, gdij) = 0'Xi is a link function
that relates the mean parameter to the covariates. As in the logistic model, the value of / for
such a model can be calculated using Theorem 1.

The proportional hazards model is somewhat more complicated. Let rjit) be the indicator
function of whether the jth patient is observed (alive and not censored) at time /. The empirical
information matrix is given by

where the first sum is over death times and the other sums are over all patients.
Divide the period of observation into k intervals with endpoints tiJi *̂+1 and assume

that the hazard function, kit), is constant within each interval. Let C(t) be the censoring
distribution and A(/) be the cumulative hazard function.

First consider the first term in the numerator of 5, EXX' exp(^'X)ry (/). Its value during
the hxh interval is approximated by its expectation at time ? — (//,+ r/i_|_])/2. Conditioning
first on X, replace ry{/) by the probability that a patient with covariate vector X is observed
at time r. £(r;(O|X) = {1 - C(r)}exp{-A(/)exp(^'X)}. Thus, the sum is approximated
by/7£[XX'exp(^'X)(l - C(/)} exp{-A(/) exp(/?'X)|l This can be found using Theorem 1.
The other terms are found similarly. Denote the summands of 5 for the intervals 1,2,... ,k
as 5i, 52 . . . . . Sk-

Let PI, be the probability that a patient dies in the hth interval. Then

-C(t)]dt

The inner integral has a closed form expression when patients enter the trial uniformly and
are followed for a fixed length of time and, in addition, there is an exponential drop out
rate. The expression for this term can be found using a symbolic integration program such as
Mathematica or Maple. Then P;, can be found using Theorem 1.

The expected value of I is approximated by Ei=i " A '̂fi which can be made arbitrarily
accurate by increasing the number of intervals.

5. Performance for logistic regression

There is no formula described in the literature for obtaining sample size when there are both
discrete and continuous covariates. Thus the situation, common in the analysis of clinical trials
and observational studies, when logistic regression is used to compare patient groups 'correct-
ing' for some possibly confounding covariate, is not described. However, it is instructive, to
see how our algorithm compares with other algorithms in the literature for the situations where
these algorithms can be used. Whittemore [I], Hsieh [2] and Hsieh et al. [3], give formulas
for the power of the logistic model for continuous normal covariates. First, we compare their
formula to ours for a single normal covariate, aside from a constant term, and then for the
situation where there are two covariates.
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5.1 Comparison for a single covariate

We consider the case with a single continuous covariate with a standard normal distribution and
a constant term. Define X = Ui, J:2)'. where J:I = 1 and.1:2 has a standard normal distribution.
The null hypothesis is that ^ 2 = 0 with the alternative that fii i= 0, we present power for a
two sided test with a significance level of 0.025 and a power of 0.90.

Then, using tbe notation of Theorem 1, tbere is only one value of s and û  =̂  (1,0)',

0
0

anda = ^2. T = ^\ and y = (0, l)'.Thus, writing e/(r, CT)

ei

^2

Substituting these values into equation (1), the standard deviation of ^2 can therefore be
shown to be equal to

1/2

and the sample size is given by

N = — - ' — . (6)

Whittemore proposes the following formula, for situations where the response probability
is stnall.

where

Whittemore's formula is derived in a similar manner as ours except that

E \XX'-

is approximated up to terms of order 0{exp(2^)) rather than evaluated numerically. Thus,
Whittemore's formula should be accurate as long as exp(/^|) is small.

The formula given in Hsieh [2], used in nQuery advisor, which he ascribes to Wbittemore,
replaces exp(^i) wherever it appears by
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Hsieh et al. [3] also propose

n =
(^0.975 +

Pi\
(7)

which is justified because the score test for a univariate logistic regression is asymptotically
equivalent to a ?-test comparing responders and non-responders.

Each of the formula above can be rearranged to give a power formula for a fixed sample
size. The first section of table I shows the power predicted for each of these methods, and by
simulation for N = 500. ^i = - 3 . - 2 . - 1 , 0, 1 and fiz = 0.68, 0.45, 0.33, 0.29, 0.33. The
values for p[ were chosen to give a wide range of response probabilities. Since Whittemore's
formula is designed for small response probabilities it is important to know where it breaks
down and whether the proposed method is superior for larger response probabilities. The
value of N was chosen to be large in order to test the asymptotic properties of the sample size
formulas and not their small sample properties, which is outside the scope of this paper. Finally,
the values of ^2 were chosen to give 90% power with a two-sided a = 0.05 significance level
using formula (7) since the correct estimation of sample size for a power of 80-90% is the
most common us of sample size formulae. The accuracy of a simulation of power based on
1000 samples is =:iO.OI.

In the univariate case, in table 1, the algorithm gives reasonable results over the full range of
values. The method used in nQuery advisor was inaccurate for intermediate values of P while
Whittemore's method is inaccurate for high values of P. The empty spaces in the nQuery
rows occur when the parameters are outside the range supported by nQuery. It is notable that
Whittemore's method works well for values of P as high as 0.27. The method based on the

Table ]. Difference between caiculaled and simulated power.

Odds ratio (exp(^2))
P

Univariate case
Simulation

Algorithm
Whittemore
nQuery
Hsieh (/-test)

Multivariate p = 0. Pi
Simttlation

Algorithm
Whiltemore
nQuery
Hsieh ((-test)

Multivariate p = 0.5, fi
Simulation

Algorithm
Whitlemore
nQuery
Hsieh (f-test)

Multivariate p — 0.5, ^
Simulation

Algorithm
Whittemore
nQuery
Hsieh (/-test)

- 3
1.97
0.047

0.92

+0.00
-0.02
-0.03
-0.02

= 0.9 case
0.96

-0.01
-0.08
-0.07
-0.06

3 = 0.9 case
0.92

-0.01
-0.06
-0.15
-0.13

ii = 0 case
0.86

-0.02
-0.07
-0.08
-0.06

- 2
1.57
0.12

0.92

-0.02
-0.02
-0.05
-0.02

0.94

-0.03
-0.03
-0.07
-0.06

0.83

0.00
+0.12
-0.08
-0.02

0.83

-0.02
-0.03
-0.07
-0.02

- 1
1.39
0.27

0.91

-0.02
0.00

-0.06
-0.02

0.89

-0.03
+0.09
-0.03
+0.02

0.76

-0-01
+0.20
-0.01
+0-05

0.80

-0.01
+0.02
-0.05
+0.01

0
I..39
0.50

0.90

-0.02
+0.05
-0.01
-0.00

0.98

-0.01
+0.02
+0.01
+0.01

0.71

-0-01
+0.27
+0.03
+0.05

0.95

0.00
+0.04
-0.00
+0.02

1
1.38
0.73

0.91

-0.02
+0.09

-0.01

0.87

-0.01
+0.13

+0.03

0.75

0.00
+0.25

+0-06

0.80

-0.01
+0.18

+0.01
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/-test worked very well as would be expected, since it does not use any approximation other
than the asyinptotic equivalence of the /-test and univariate logistic regression.

5.2 Comparison for multiple covariates

Suppose interest focuses on ^2 t̂ ie coefficient ofthe first continuous covariate but there is an
additional covariate in the model that is correlated to xj- Assume that this covariate, xj, has
mean 0 and variance 1 and the correlation of xi and .r̂  is p. Although proposed algorithm
has been incorporated into a general purpose program which is available from the authors,
we include an explicit formula for this case in order to provide a comparison to the other
methods. We found this formula from Theorem 1 using a symbolic manipulation program. First

3̂ + 2^2^?.P and r = jSi, then defining e^., ei. e^ as in Theorem I the standard
deviation of ft is given by

1/2
\ P\\^\ — fOĈ 2̂  -r ^P2Py\^\ — i^iifDP T P-yKf^iP — ff[)e-tfJ- -r CnV—l -T P~ i) t

V =

The sample size then can be found using fonnula (6).
Whittemore's formulation for the sample size in this case is.

where in this case
1-1

and

V2 = exp -^ '-^ (1 - p-)

This formula is not equivalent to the previous formula when ^3 = 0 because she does not
compute the 'correction factor' in the same way. Hsieh corrects the univariate sample size by
dividing by a 'variance inflation factor," which in this case would equal (I - p-). He justifies
this by analogy with the linear regression and by simulation. It appears that his simulations
are conducted with 6̂3 = 0. The method used in nQuery advisor is to adjust their univariate
sample size by the same "variance inflation factor.'

It is instructive to see how these methods perform when fiy -^ 0, Consider the simplest case
when /> = 0, shown in the second section of table I. Then the nQuery and the Hsieh method
give the same power calculation as before. In both cases these methods underestimate the
power, while Whittemore's method and the algorithm, which incorporate ft, give answers
much closer to the simulation. Whittemore's method breaks down, as expected, when exp(;6!)
is high.

Finally, we consider the case when p ^ 0.5, shown in the last two sections of the table,
the Hsieh method gives adequate approximations as long as ^3 = 0. When ft 7̂  0 only the
algorithm gives adequate approximations.

5.3 Discrete analysis of covariance

The most common use of the logistic model is for comparisons of response rates between
treatment groups in clinical trials or disease rates between exposure groups in observational
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Figure 1. Simulated power when the calculated power = 0.9.

Studies 'controlling" for possibly confounding covariates. We ran a simulation to assess the
accuracy of the algorithm. We consider the case where there is one continuous covariate and one
discrete covariate. We assume that X = (JTI, JTT, JC^), where ÂI = 1, Jt2 = 1 for the treatment
or exposure group and zero otherwise, and xi is the (possibly) confounding covariate with a
normal distribution. We assume the mean of X3 is —M/2 when X2 = 0 and fi/l when X2 = \.
Thus if n = 0, xy does not confound the analysis because its distribution is independent of
X2- We assume the variance of xi is 1.

Lettheproportionof patients in the first group, when A| — 1 be/?. To simplify the situation,
we consider values of ^2 where the power would be 90% when total sample size is 500.
Thus the parameters that affect the power are ^1 . fi^. IJ. and p. We used the values of ^1 =
—3, —2. —1,0, 1 described previously, we set/? to be O.I, 0.3 and 0.5 and we set ̂ 3 to be either
zero or the values used previously, to simulate the case where the covariate is influential, fi
was set to — l,Oor + l. Figure 1 shows the result of this simulation. The accuracy is good with
most simulated powers being within 0.02 of the nominal power of 0.9. The samples where
the success probabilities were high or low and where p = 0.1 were the situations where the
simulated power was most different from the nominal power. A similar relationship was found
using fii on the abscissa.

6. Performance for the proportional hazards model

Schoenfeld [4] gives a sample size formula for a survival 'Analysis of Covariance' where
there is a treatment, and a set of continuous explanatory variables. This formula is valid for
the case of a randomized study where the distribution of the covariates is independent of the
treatment. Schmoor^/^fl/. [5J and Bernardo ef«/. (6J show, when there is no censoring, that this
formula can be corrected for the situation where independence does not hold by the addition
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of a 'variance inflation factor' similar to that of Hsieh [2]. With censoring they argue that it
still provides a reasonably good approximation.

To evaluate the algorithm, consider the case where ^i is a binary variable that denotes
treatment and XT is a normal random variable with mean ix/2 or —fi/2 for xi equal 0 or 1,
respectively. Suppose further that the censoring distribution is uniform on the interval (1,4),
and that the probability of death for a patient with X] = 0, X2 = 0 is d and the underlying
hazard is constant. We consider trials with 500 patients where p = P(x\ = I) = {0.1,0.3, 0.5,
0.7, 0.9). d = {0.\, 0.3. 0.5, 0.7, 0.9} and fix adjusted to give 90% power for an increase and
decrease in mortality when .t] = 1, ^2 = |0.0±0.33 ± l.0( and /i = — 1. 0. 1.

Note tbat Schoenfeid's formula is only applicable when /x = 0. In that case, under the
conditions above the formula would be

The value of D in this formula and in the formulas which use a 'variance inflation factor' is
the proportion of patients dying on the trial. It is not equal to d above which is the proportion
when xi = 0, ^2 = 0- To get from one to the other involves first solving the equation

1 - e""̂ ^
d = 1

which is the expression for ^ as a function of the exponential parameter 0 when the censoring
distribution is uniform on the interval (1, 4). Then

D = (l-
1 - e

/
1 - e -

Figure 2 shows the performance of tbe algorithm. The data has been divided into 'unbal-
anced data' shown with a ' + ' and 'other data' shown with a '*.' The unbalanced data has

Performance of Algorithm

0.95

0.9

0.85

08

0.75

0.7

0.65

Unbalanced data
Other data

+ +

0.8 0.B05 Q.81
Calculaiion

0.815

Figure 2. Performance of algorithm.
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^ = 0.1. Most of the cases where the algorithm failed to perform properly were in the
unbalanced case. The problem is that despite a sample size of 500 small sample properties
predominate.

7. Use of the algorithm to study the properties of logistic regression

One advantage of having an algorithm that quickly calculates the power and sample size under
a wide range of circumstances is that it enables research into the properties of these models.
We provide some examples here.

7.1 Power for large values of fi

One problem with Wald's test is that for very large parameter values the power decreases.
The test is therefore inconsistent although the power may reach one well before it begitis to
decrease. It is easy to see what happens in the case where the covariate has two values (— 1, +1)
each with probability 0.5. Assume that there is no constant term. Then the non-centrality
parameter is

exp(P)

which approaches zero as 0 approaches infinity. Thus, the power will decrease for very large
values of ^.

7.2 Effect of covariates on power

Covariates are added to the logistic regression models in randomized clinical trials to increase
the power of a treatment comparison. In observational studies covariates are also included to
correct for confounding. The algorithm can be used to determine the effect of both these uses
on power.

Suppose that the logarithm of the odds ratio is // + 0]X] + ftj:2 where X[ is a binary
treatment indicator and X2 is a normally distributed covariate. Suppose we wish to test the
hypothesis that ^i = 0 and x: is included in the model either to increase the power of the test
of ;6i = 0 or to remove the confounding caused by an association between x\ and X2.

Assume that the mean of ^2 is A/2 or —A/2 depending on whether X| = 0 or xi = 1.
Assume that the standard deviation of X2 is 1. We wish to see how the power of a test H^: (i\ = 0
is affected by ^2 and A.

First consider the case where A = 0. This occurs in a randomized study where the mean
of the normally distributed variable is the same for each treatment. The calculation of the
effect of including a covariate in the analysis of a randomized study is complicated by an
'Amalgamation Paradox' [7]. The value of 0i is dependent on whether X2 is included in the
model. If-vi is in the model then ^\ estimates the log ofthe odds ratio for fixed values of j i-
When X2 is not included in the model fi\ measures the odds ratio for the entire population
which is less than the odds ratio for fixed values of .V2 whenever ^2 ¥^ 0.

In order to find the effect of adding a covariate .1:2 as a function of its coefficient ^2- we fix
/i* which we define as the attenuated treatment effect without the covariate. For each value
of ^2' we solve for /ii which is a function of ^1 and ^* and calculate the power using the
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algorithm. Define

Then

-I •<p{z)dz.

^
which is the attenuated, uncorrected log-odds ratio.

In an example with fi —0, if we set the sample size to get a power of 0.70 when ^3 = 0,
if ^3 = 1, an odds ratio of 2.7, the power increases to 0.84 and if fiy ~ 2, an odds ratio of
7.4, tbe power increases to 0.9. The increase is neariy linear so a figure is not included. If fi\.
rather than ^*, were held constant the power decreases with increased values of ^2 • Notice that
the power gain is small for even relatively large values of (S2, for instance suppose that a one
standard deviation increase in .v: increases the odds ratio by 3. Then ^2 — 11 and the power
increases from 0.79 to 0.85, the same power increase one would see from an 18% increase in
sample size. These calculations are based on total sample size of 100 with fi] = 1.15. These
calculations would imply that the inclusion of covariates have a minor effect on power unless
they are extremely prognostic.

Next we consider the effect of confounding on power, and to do this we plot power as
function of increasing values of A. Consider the case where ^ 2 = 0 and where ^ 2 = 1 - Fix fi\
so that/i* = 1.15 when A ^ 0.

The result of this calculation is as expected: a drop in power as the extent of confounding
increases (see figure 3).

confounded ANCOVA-flxed Beta*

0.1 0.2 0.3 0.4 0.5 0.6
Difference in Means

0.7 0.8 0.9

Figure 3. Power for confounded ANCOVA-fixed
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8. Use of the algorithm to study the properties of the proportional hazards model

Unlike the logistic model, the proportional hazards model is no longer valid if a covariate is
omitted. If the log hazard ratio is 0\x\ + ;62-̂ 2 and 6̂2 > 0 then the hazard ratio for the two
values of jfi will not be constant over time [8]. Despite the fact that the model does not fit the
data, it still provides a valid test of HQ: /ii = 0 when X2 is independent of ;f| because under
the null hypothesis the proportional hazards model holds. In order to determine the affect of
covariate correction on power let ^* be the limit of ^1 aR the sample size gets large. Then it is
necessary to calculate the power as ^2 increases with a fixed value of (i*.

Gail et al. [9] give an expression for ^* as a function of ^\ and ^2 involving several
numerical integrals which can be simplified using Theorem I. In order to provide an example
of the effect of covariate adjustment, we study the most common situation which is a clinical
trial. We assume that X| has a value of 0 or 1 with probability of 0.5, as would occur in a two
arm clinical trial. We assume that the clinical trial has 24 months of accrual and 12 months
of follow up and the underlying hazard (with X] = 0) is 0.03. This would give a 36 months
survivalof 34%. We assume that ^* — —0.38. This was chosen to be atypical value for a large
trial, without a covariate the power would be 80% if for a trial with a total of 500 patients, this
value corresponds to a 32% decrease in hazard.

Now suppose that there was an important covariate, say ^2 = 0.5, a hazard ratio of 1.65.
Then ^1 would have to be 0.41 to achieve a value of/9* of 0.38 and the power would be 86%.
Suppose the covariate had a hazard ratio of two {ft — 0.6931). Then, following the same
logic, the power would be 0.89. The covariate had a hazard ratio of 3 then the power would
be 0.97. Note that in the latter case if ^1 = 0.38 the power is only 83%.

Correcting for a common important covariate can substantially increase power in a clinical
trial but the power increase is not apparent unless you take into account the fact that the
hazard ratio before the introduction of the covariate will be less than the hazard ratio after its
introduction.

9. Computational efficiency

An alternative method of computing power is simulation. Programming a general simulation
for these problems takes approximately the same amount of code as the programs using the
proposed algorithm but simulation programs are easier to conceptualize and debug. A sample
problem was run using the algorithm and a simulation with 500 replications. The programs
were written in Matlab and run on a 800 MHz computer. A logistic model took 0.63 s using the
algorithm and 2.2 s using a simulation. A proportional hazards model took 1.3 s with 5 intervals
and 2.6 s with 10 intervals and a simulation took 8.4 s. If the sample size was increased to
400, the logistic model simulation time increased to 3.1 s and the proportional hazards model
simulation time increased to 27 s.

10. Discussion

The algorithm finds the power for the Wald test that a specified linear combination of the
parameters equal zero. There are two other tests which are commonly used for the same
purpose: the likelihood ratio test and the Rao efficient score test.

The likelihood ratio test is invariant to reparameterization and has better small sample prop-
erties. The test statistic can be calculated using popular software but the estimation program
must be run twice. Confidence intervals for a single parameter require calculating the profile
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likelihood for the parameter, which is computationally demanding, although this calculation
is implemented in SAS.

The Rao efficient score test [10] is based on the derivatives of the log-likelihood under the
null hypothesis. It has the advantage that it only requires parameter estimation under the null
hypothesis and thus is useful for stepwise variable selection algorithms.

Rao shows that all three test statistics converge to each other in probability under the
null hypothesis and, therefore, will have the same distribution under contiguous alternative
distributions [111. Thus the algorithm presented here should give reasonable approximations
to the power for any of these tesis. A direct method of calculating the non-centrality parameter
of any likelihood ratio test is given in Strawderman [ 12] and for those used for the generalized
linear models in Shieh [13]. Both methods would involve multivariate integration if there were
more than one continuous covariate, although the integration could be made tractable using
Theorem I if the continuous covariates had a normal distribution.

The current paper focuses on the Wald test because it is the most commonly used, largely
because it is easy to calculate, and the statistic for testing tbe significance of a single covariate
is its estimate divided by its standard error. Confidence intervals based on the test are very
simple to compute. However, the Wald test has been criticized because it is not invariant to
a reparameterization and its distribution may not be normal in some circumstances [14] and
should be used with care. One problem witb the statistic is discussed in section 7.

Theorem I reduces the multivariate integral needed to calculate the information matrix to
a univariate integral in fi'X. The same method could be applied for non-normal covariates but
the result would only be a univariate integral if the distribution of ^'X could be expressed in
closed form. Thus, the results in this paper could have been presented in a much more general
but less useful context.

A computer program based on this algorithm has several useful applications. One application
is to allow the use of a single program to calculate sample size in many situations. Many discrete
data analysis problems can be solved using a logistic regression, thus the same computer
application could be used to calculate the sample size to compare two proportions, to compare
more than two proportions, to test for the effect of a continuous covariate and to determine
the effect of a covariate when proportions are compared.

Software using the algorithm was written using Matiab. A compiled version of the
software for Windows 95/NT is available from the authors for individual use (www.power-
analysis.com/power.btm). The algorithm has also been incorporated into a commercial
program Tower and Precision' [15].

The competitor to this software is simulation which can always be used to accurately
calculate power. The problem with simulation is tbat, even with modem computers, it is too
slow for many study design purposes. Simulation calculates the power from the sample size.
In order to reverse the process four or five simulations must be performed for each calculation
of the sample size from the power, while the algorithm can find sample size directly because
the information matrix is proportional to the sample size. For larger samples, it would take 3
or 4 minutes, to calculate a sample size for the proportional hazards model. This is feasible for
single calculations but it would take too much time to generate the extensive graphs and user
aids provided in 'Power and Precision.' It is clear, however, that in a few more generations of
computers, there will be no need to develop efficient algorithms such as the one described here.
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Appendix A

A.I Proof of Theorem

Recall the first part of the covariate vector which is discrete and has K distinct values each
with probabilities W]. W2 U'A' and the distribution of XX' is different for each of these
values. Let E\, E2, . . . be the expectations with respect to these distributions.

Therefore,
m

^ {Al)

The following method is used to compute E^[X'Xf(fi'X)]. The subscript s is suppressed in
what follows.

First note that

= E{f{0'X)E(XX'\0'X)}

(A2)

The matrix T." is the variance covariance matrix of X where the first d components,
being constant, have zero variance. Then using standard formulas for conditional normal
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distributions.

= u + T"0{p'i:"^r^(p'X - fi'u) (A3)

and

V(X'I^'X) = E" - (E''^)(^'5:''^)-'(E''^)'. (A4)

Letff = V^'S";?. T = fi'u,z = (fi'X-T)/a andy = I' '/9/a. Note that e has a standard
normal distribution.

Then, from equations (A3) and (A4),

E(X'\fi'X)=u-\-yz (A5)

and

''X) = -L" ^yy'. (A6)

Definef,(T,a) = Eiz' f(az + T))Jori = Q. I. 2, where z has a standard normal distribution.
This value will be found by numerical integration.

Substituting equations (A5) and (A6) into equation (A2) we get that

)} = (uu + E" - yy')eo{T. a) + (uy' + yu')e](r, a) + yy'e2iT. a) (A7)

The derivations for £{X/(^'X)1 and £{/(^'X)} are similar.






